<address id="fbjhd"></address>

    <sub id="fbjhd"></sub>

        <address id="fbjhd"></address><thead id="fbjhd"></thead>


        數學系Seminar第2011期 陶哲軒關于在拋物面上雙線性限制的最優估計

        創建時間:  2020/09/27  龔惠英   瀏覽次數:   返回

            數學系 Seminar 第 2011 期

            2020年建設高水平大學項目——研究生課程《近代分析》系列報告

        報告主題: 陶哲軒關于在拋物面上雙線性限制的最優估計

        報 告 人:Shao Shuanglin 教授 (University of Kansas)

        報告時間:2020年10月9日(周五) 19:30

        參會方式:騰訊會議(ID: 953687062)

        邀 請 人:趙發友

        主辦部門:理學院數學系

        報告摘要: This talk is concerned with a topic in harmonic analysis. The Fourier restriction conjecture originated in Elias Stein's question in the late 60's. Stein asks whether it makes sense to restrict Fourier transforms of a function to a hypersurface in the n dimensional Euclidean spaces such as the sphere, the paraboloids, or the cone. Equivalently it concerns establishing strong type Lebesgue space estimates for Fourier transforms of certain surface carried measures. Such are called Fourier restriction estimates. They are connected to Strichartz's estimates in partial differential equations. In this talk we will discuss some ``recent" progress towards this problem. More precisely we will report Tao's paper in 2003 to illustrate a central idea used in recent proofs. The proof establishes a bilinear restriction estimate for paraboloids by using Wolff's induction on scales.



        歡迎教師、學生參加!

        上一條:數學系“60周年”系慶系列報告 Toroidal Lie algebras and extended affine Lie algebras

        下一條:前沿新材料系列報告 Li-ion battery and beyond


        數學系Seminar第2011期 陶哲軒關于在拋物面上雙線性限制的最優估計

        創建時間:  2020/09/27  龔惠英   瀏覽次數:   返回

            數學系 Seminar 第 2011 期

            2020年建設高水平大學項目——研究生課程《近代分析》系列報告

        報告主題: 陶哲軒關于在拋物面上雙線性限制的最優估計

        報 告 人:Shao Shuanglin 教授 (University of Kansas)

        報告時間:2020年10月9日(周五) 19:30

        參會方式:騰訊會議(ID: 953687062)

        邀 請 人:趙發友

        主辦部門:理學院數學系

        報告摘要: This talk is concerned with a topic in harmonic analysis. The Fourier restriction conjecture originated in Elias Stein's question in the late 60's. Stein asks whether it makes sense to restrict Fourier transforms of a function to a hypersurface in the n dimensional Euclidean spaces such as the sphere, the paraboloids, or the cone. Equivalently it concerns establishing strong type Lebesgue space estimates for Fourier transforms of certain surface carried measures. Such are called Fourier restriction estimates. They are connected to Strichartz's estimates in partial differential equations. In this talk we will discuss some ``recent" progress towards this problem. More precisely we will report Tao's paper in 2003 to illustrate a central idea used in recent proofs. The proof establishes a bilinear restriction estimate for paraboloids by using Wolff's induction on scales.



        歡迎教師、學生參加!

        上一條:數學系“60周年”系慶系列報告 Toroidal Lie algebras and extended affine Lie algebras

        下一條:前沿新材料系列報告 Li-ion battery and beyond

        江苏快三计划